Biological Materials of Marine Origin: Invertebrates (Biologically-Inspired Systems)

nkduy05

Member
Joined
Jul 28, 2011
Messages
120
Reaction score
1
Points
16
Vietnam Non-Veterinarian
Biological Materials of Marine Origin: Invertebrates (Biologically-Inspired Systems
[Hardcover] Hermann Ehrlich (Author)
Product Details

  • Hardcover: 569 pages
  • Publisher: Springer; 1st Edition. edition (September 8, 2010)
  • Language: English
  • ISBN-10: 9048191297
  • ISBN-13: 978-9048191291
  • Product Dimensions: 9.5 x 6.5 x 1.6 inches
  • Shipping Weight: 2.6 pounds
This text is the first ever to offer a coherent analysis of the nature, origin and evolution of biocomposites and biopolymers found within the broad variety of marine invertebrate organisms and their unusual structural formations. It is an interdisciplinary look at the biomineralization, biomimetics and materials science unique to marine invertebrates. In this seminal work, Hermann Ehrlich, for the first time, proposes the classification, “biological materials of marine origin”. He uses numerous unique examples of marine origin to critically analyze many current relevant concepts from both the biological and materials science perspectives, including hierarchical organization of biocomposites and skeletal structures, structural bioscaffolds, biosculpturing, and biomimetism. In addition, he covers many modern topics never before available in textbook format, such as phenomenon of multiphase biomineralization, biomineralization-demineralization-remineralization phenomena, and silica-collagen and silica-chitin biocomposites. And he reviews the most relevant advances in the marine biomaterials research field, detailing the applications of biomaterials science in modern technology and medicine. Complete with tables, electron micrographs, line drawings, and dozens of previously unpublished images of unique marine structures, Biological Materials of Marine Origin is aimed at scientists and students concerned with the world of marine biological materials.


Biological Materials of Marine Origin
Invertebrates
Series: Biologically-Inspired Systems, Vol. 1
Ehrlich, Hermann
1st Edition., 2010, XXIII, 569 p., Hardcover
ISBN: 978-90-481-9129-1

This text is the first ever to offer a coherent analysis of the nature, origin and evolution of biocomposites and biopolymers found within the broad variety of marine invertebrate organisms and their unusual structural formations. It is an interdisciplinary look at the biomineralization, biomimetics and materials science unique to marine invertebrates. In this seminal work, Hermann Ehrlich, for the first time, proposes the classification, “biological materials of marine origin”. He uses numerous unique examples of marine origin to critically analyze many current relevant concepts from both the biological and materials science perspectives, including hierarchical organization of biocomposites and skeletal structures, structural bioscaffolds, biosculpturing, and biomimetism. In addition, he covers many modern topics never before available in textbook format, such as phenomenon of multiphase biomineralization, biomineralization-demineralization-remineralization phenomena, and silica-collagen and silica-chitin biocomposites. And he reviews the most relevant advances in the marine biomaterials research field, detailing the applications of biomaterials science in modern technology and medicine. Complete with tables, electron micrographs, line drawings, and dozens of previously unpublished images of unique marine structures, Biological Materials of Marine Origin is aimed at scientists and students concerned with the world of marine biological materials.
Content Level » Research
Keywords » Biocomposites - Biomaterials - Biomimetics - Biomineralization - Biosilica
Related subjects » Animal Sciences - Biotechnology - Life Sciences - Organic Chemistry - Structural Materials & Biomaterials


Contents

Part I Biomaterials

1 Biomaterials and Biological Materials, Common Definitions, History, and Classification . . . . . . . . . . . . . . . . 3
1.1 Definitions: Biomaterial and Biological Material . . . . . . . . 3
1.2 Brief History of Biomaterials . . . . . . . . . . . . . . . . . . . 5
1.3 Classification of Biomaterials . . . . . . . . . . . . . . . . . . 10
1.3.1 Metals and Alloys . . . . . . . . . . . . . . . . . . . . 15
1.3.2 Ceramics . . . . . . . . . . . . . . . . . . . . . . . . 15
1.3.3 Polymers . . . . . . . . . . . . . . . . . . . . . . . . 16
1.3.4 Composites . . . . . . . . . . . . . . . . . . . . . . . 16
1.4 Requirements of Biomaterials . . . . . . . . . . . . . . . . . . 17
1.5 The Future of Biomaterials . . . . . . . . . . . . . . . . . . . . 19
1.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Part II Biominerals and Biomineralization

2 Biominerals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.1 Biominerals of Marine Invertebrate Origin . . . . . . . . . . . . 28
2.1.1 Calcium-Based Biominerals . . . . . . . . . . . . . . 28
2.1.2 Magnesium-Based Biominerals . . . . . . . . . . . . . 30
2.1.3 Barite-Based Biominerals . . . . . . . . . . . . . . . . 32
2.1.4 Fe-Based Biominerals . . . . . . . . . . . . . . . . . . 33
2.1.5 Vanadium (Biomineral?) . . . . . . . . . . . . . . . . 34
2.1.6 Strontium-Based Biominerals . . . . . . . . . . . . . . 34
2.1.7 Boron . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.1.8 Titanium-Based Biominerals . . . . . . . . . . . . . . 35
2.1.9 Copper-Based Biominerals . . . . . . . . . . . . . . . 36
2.1.10 Zinc-Based Biominerals . . . . . . . . . . . . . . . . . 36
2.1.11 Manganese Oxides . . . . . . . . . . . . . . . . . . . 38
2.1.12 Germanium-Based Biominerals . . . . . . . . . . . . . 38
2.1.13 Silica-Based Biominerals . . . . . . . . . . . . . . . . 40
2.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3 Biomineralization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4 Biomineralization–Demineralization–Remineralization Phenomena in Nature . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.1 Principles of Demineralization: Isolation of Organic Matrices . 63
4.2 Structural Biopolymers as Common Templates for Biomineralization . . . . . . . . . . . . . . . . . . . . . . . 73
4.2.1 Chitin . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.2.2 Collagen . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5 Multiphase Biomineralization . . . . . . . . . . . . . . . . . . . . . 103
5.1 Silica–Aragonite–Chitin Biocomposites in Demosponges (Demospongiae: Porifera) . . . . . . . . . . . 103
5.2 Radula as Example of Multiphase Biomineralization . . . . . . 111
5.3 Silica–Chitin–Apatite Biocomposites of Brachiopoda . . . . . . 113
5.4 Copepoda Teeth as a Multiphase Biocomposite . . . . . . . . . 115
5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

Part III Biomineralized Structures and Biocomposites

6 Hierarchical Biological Materials . . . . . . . . . . . . . . . . . . . 125
6.1 Cellular Structures . . . . . . . . . . . . . . . . . . . . . . . . 126
6.2 Honeycomb Structures: From Nano- to Macroscale . . . . . . . 127
6.3 Siliceous Honeycomb Cellular Structures in Diatoms . . . . . . 132
6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

7 Paleodictyon Honeycomb Structure . . . . . . . . . . . . . . . . . . 137
7.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

8 Peculiarities of the Structural Organization of the Glass Sponges’ (Hexactinellida) Skeletons . . . . . . . . . . . . . . . . . . 143
8.1 Glass Sponges (Hexactinellida) . . . . . . . . . . . . . . . . . 145
8.2 Demosponges (Demospongiae) . . . . . . . . . . . . . . . . . 147
8.3 Lithistid Sponges . . . . . . . . . . . . . . . . . . . . . . . . . 148
8.4 Cellular Structures in Glass Sponges . . . . . . . . . . . . . . . 148
8.5 Eiffel’s Design in Skeletal Frameworks of Glass Sponges . . . . 155
8.6 Spiculogenesis . . . . . . . . . . . . . . . . . . . . . . . . . . 166
8.7 The Role of the Organic Matrix in Biosilica Formation by Sponges . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
8.7.1 Silicatein-Based Silicification . . . . . . . . . . . . . . 172
8.7.2 Chitin- and Collagen-Based Silicification . . . . . . . 173
8.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

9 Phenomenon of Interspace Mineralization in the Bilayered Organic Matrix of Deep-Sea Bamboo Coral (Anthozoa: Gorgonacea: Isididae) . . . . . . . . . . . . . . . . . . . . . . . . . 187
9.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

10 Bamboo Corals as Living Bone Implants . . . . . . . . . . . . . . . 195
10.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

11 Sand Dollar Spines . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
11.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

12 Molluscs Spicules . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
12.1 Spicules of Nudibranchia . . . . . . . . . . . . . . . . . . . . . 212
12.2 Spicules in Aplacophora . . . . . . . . . . . . . . . . . . . . . 219
12.3 Spicules in Polyplacophora (Chitons) . . . . . . . . . . . . . . 225
12.4 Onchidella Spicules . . . . . . . . . . . . . . . . . . . . . . . 228
12.4.1 Onchidella celtica: Silica-Containing Slug or Mystery? 230
12.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

Part IV Non-mineralized Structures

13 Spongin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
13.1 Spongin as a Halogenated Scleroprotein . . . . . . . . . . . . . 246
13.2 Spongin as a Collagenous Protein . . . . . . . . . . . . . . . . 248
13.3 Function of Spongins in Natural Environments . . . . . . . . . 251
13.4 Mechanical Properties of Spongin-Based Skeletons . . . . . . . 252
13.5 Spongin as a Three-Dimensional Scaffold for Tissue Engineering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
13.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254

14 Gorgonin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
14.1 Introduction into the History and Chemistry of Gorgonin . . . . 258
14.2 Mechanical Properties of Gorgonin-Based Skeletons . . . . . . 262
14.3 Gorgonin-Based Skeletons and Paleoceanographic Dynamics . 265
14.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267

15 Antipathin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
15.1 Brief Introduction into Black Corals . . . . . . . . . . . . . . . 271
15.2 Chemistry of Black Corals . . . . . . . . . . . . . . . . . . . . 273
15.3 Material Properties of Antipathin-Based Skeletons . . . . . . . 275
15.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277

16 Rubber-Like Bioelastomers of Marine Origin . . . . . . . . . . . . 279
16.1 Hinge Ligament . . . . . . . . . . . . . . . . . . . . . . . . . 279
16.2 Chemistry of the Hinge Ligament . . . . . . . . . . . . . . . . 281
16.3 Structural Features of Hinge Ligaments . . . . . . . . . . . . . 284
16.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286

17 Capsular Bioelastomers of Whelks . . . . . . . . . . . . . . . . . . 289
17.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296

18 Byssus: From Inspiration to Development of Novel Biomaterials . . 299
18.1 Byssus—An Ancient Marine Biological Material . . . . . . . . 301
18.2 Why Molluscs Produce Different Kinds of Byssus . . . . . . . 303
8.3 Chemistry of Byssus and Related Proteins . . . . . . . . . . . . 305
18.3.1 M. edulis Adhesive Protein-2 (Mefp-2) . . . . . . . . . 307
18.3.2 M. edulis Adhesive Protein-4 (Mefp-4) . . . . . . . . . 308
18.4 Biomechanics and Materials Properties of Byssus . . . . . . . . 309
18.5 Biocomposite-Based Byssus . . . . . . . . . . . . . . . . . . . 312
18.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314

19 Abductin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319
19.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322

20 Resilin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323
20.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326

21 Adhesion Systems in Echinodermata . . . . . . . . . . . . . . . . . 327
21.1 Sea Urchins . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328
21.2 Sea Cucumbers . . . . . . . . . . . . . . . . . . . . . . . . . . 329
21.3 Sea Stars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331
21.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333

22 Adhesive Gels from Marine Gastropods (Mollusca) . . . . . . . . . 335
22.1 The Role of Mucus in Gastropod Gels . . . . . . . . . . . . . . 336
22.2 Chemistry of Gastropod Gels . . . . . . . . . . . . . . . . . . . 338
22.3 Possible Mechanism of Cross-Linking . . . . . . . . . . . . . . 338
22.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340

23 Barnacle Cements . . . . . . . . . . . . . . . . . . . . . . . . . . . 341
23.1 Barnacles—Crustaceans That Mimic Molluscs . . . . . . . . . 341
23.2 “First-Kiss” Adhesion Behavior in Barnacles . . . . . . . . . . 343
23.3 Barnacle Cements . . . . . . . . . . . . . . . . . . . . . . . . 345
23.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347

Part V Suction-based Adhesion in Marine Invertebrates

24 Suctorian Protozoa . . . . . . . . . . . . . . . . . . . . . . . . . . . 351
24.1 Suctorian Ciliates . . . . . . . . . . . . . . . . . . . . . . . . . 351
24.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356

25 Trichodina Sucker Disk . . . . . . . . . . . . . . . . . . . . . . . . 359
25.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362

26 Giardia Suction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365
26.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 368
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 368

27 Suction in Molluscs . . . . . . . . . . . . . . . . . . . . . . . . . . . 371
27.1 Limpets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371
27.2 Cephalopods . . . . . . . . . . . . . . . . . . . . . . . . . . . 372
27.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377

28 Halogenated Biocomposites . . . . . . . . . . . . . . . . . . . . . . 379
28.1 Polychaetes Jaws . . . . . . . . . . . . . . . . . . . . . . . . . 382
28.2 Crustaceans Alternative Cuticles . . . . . . . . . . . . . . . . . 386
28.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 388
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 388

29 Chitin–Protein-Based Composites . . . . . . . . . . . . . . . . . . . 391
29.1 The Highly Flexible Setae of Hairy Lobster K. hirsuta . . . . . 392
29.2 S. crosnieri . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395
29.3 Structural Features of E. sinensis Setae . . . . . . . . . . . . . 398
29.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403

Part VI Macromolecular Biopolymers

30 Chitin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409
30.1 Two- and Three-Dimensional Chitinous Scaffolds of Poriferan Origin . . . . . . . . . . . . . . . . . . . . . . . . 409
30.2 Modern View on Toxicity, Immunology, Biodegradation, and Biocompatibility of Marine Chitin . . . . . . . . . . . . . . 416
30.2.1 Toxicity . . . . . . . . . . . . . . . . . . . . . . . . . 416
30.2.2 Immunology . . . . . . . . . . . . . . . . . . . . . . . 416
30.2.3 Biodegradability . . . . . . . . . . . . . . . . . . . . . 418
30.2.4 Biocompatibility . . . . . . . . . . . . . . . . . . . . 418
30.2.5 Wound Dressing . . . . . . . . . . . . . . . . . . . . . 420
30.2.6 Tissue Engineering . . . . . . . . . . . . . . . . . . . 422
30.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 422
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423

31 Marine Collagens . . . . . . . . . . . . . . . . . . . . . . . . . . . . 427
31.1 Poriferan Collagens . . . . . . . . . . . . . . . . . . . . . . . . 428
31.2 Coelenterates Collagens . . . . . . . . . . . . . . . . . . . . . 430
31.3 Molluscs Collagens . . . . . . . . . . . . . . . . . . . . . . . . 434
31.4 Echinoderm Collagens . . . . . . . . . . . . . . . . . . . . . . 435
31.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 438
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 438

Part VII Self-Made Biological Materials

32 Self-Made Biological Materials of Protozoans . . . . . . . . . . . . 445
32.1 Testate Amoeba . . . . . . . . . . . . . . . . . . . . . . . . . . 445
32.2 Gromiids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 447
32.3 Tintinnids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 448
32.4 Xenophyophores . . . . . . . . . . . . . . . . . . . . . . . . . 450
32.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 452
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 452

33 Foraminifera . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 455
33.1 Foraminifera: Agglutination Versus Biomineralization . . . . . 455
33.2 Silk-Based Shell of Stannophyllum zonarium . . . . . . . . . . 459
33.3 Sponge-Imitating Giant Foraminifer . . . . . . . . . . . . . . . 461
33.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 463
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 463

34 Polychaete Worms: From Tube Builders to Glueomics . . . . . . . 465
34.1 Larvae Metamorphosis and the Initial Phases of Tube Formation 468
34.2 The Chemistry of Tube Construction . . . . . . . . . . . . . . . 471
34.3 Features of the Pectinariid Tubes . . . . . . . . . . . . . . . . . 474
34.4 Biomimetic Potential of Polychaetes Bioadhesives . . . . . . . 476
34.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 479
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 480

Part VIII Extreme Biomimetics

35 Life in Extreme Environments: From Bacteria to Diatoms . . . . . 485
35.1 Eurythermal Marine Biota as Source for Development of Novel Biomaterials . . . . . . . . . . . . . . . . . . . . . . 486
35.2 Biosilicification in Geothermal and Hydrothermal Environments 491
35.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 496
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 496
Epilogue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 499
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 502
Additional Sources . . . . . . . . . . . . . . . . . . . . . . . . 503
Internet Resources . . . . . . . . . . . . . . . . . . . . . . . . 503
Addendum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 505
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 522
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 549
Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 565

 
Back
Top