Physiology Vertebrate Red Blood Cells: Adaptations of Function to Respiratory Requirements

Kruza

Well-known member
Joined
Jul 9, 2011
Messages
317
Reaction score
523
Points
63
Belarus Pet Owner
Vertebrate Red Blood Cells: Adaptations of Function to Respiratory Requirements
by M. Nikinmaa



Series: Zoophysiology (Volume 28)
Pages: 262
Publisher: ---
Edition: 1st ed., 1990
Language: English
ISBN-10: 3642839118
ISBN-13: 978-3-642-83911-5

Description

1. Introduction.- 2. Erythropoiesis and the Control of Circulating Red Cell Number.- 2.1 Erythropoietic Sites.- 2.2 Mammalian Erythropoiesis.- 2.3 Erythropoiesis in Nonmammalian Vertebrates.- 2.3.1 Fish.- 2.3.2 Amphibians.- 2.3.3 Reptiles.- 2.3.4 Birds.- 2.4 Senescence of Red Blood Cells.- 2.5 Erythropoiesis-Independent Factors Increasing Circulating Red Cell Number.- 3. The Biosynthesis and Structure of Haemoglobin.- 3.1 Uptake of Iron into Erythroid Cells.- 3.2 Haem Synthesis.- 3.3 Globin Synthesis.- 3.3.1 Structure of Globin Genes.- 3.3.2 Globin Chain Synthesis and Its Regulation.- 3.4 Subunit Assembly of Haemoglobin.- 3.5 Haemoglobin Structure in Vertebrates.- 3.5.1 Haemoglobin Heterogeneity in Adult Animals.- 3.5.2 Ontogenic Changes in Vertebrate Haemoglobins — Haemoglobin Switching.- 4. Structure of Circulating Red Cells.- 4.1 General Anatomy of the Cell.- 4.2 The Red Cell Membrane.- 4.2.1 Membrane Lipids.- 4.2.2 Structural and Membrane Proteins.- 5. Red Cells in Circulation: Factors Affecting Red Cell Shape and Deformability.- 5.1 Blood Viscosity.- 5.2 Deformability of Red Cells.- 5.2.1 Basic Principles.- 5.2.2 Methods for Measuring Red Cell Deformability.- 5.2.3 Deformation of Red Cells in Circulation.- 5.2.4 Factors Affecting Red Cell Deformability.- 6. Energy Metabolism and Regulation of Organic Phosphate Concentrations.- 6.1 Energy Consumption.- 6.2 Transport of Substrates into the Red Cells.- 6.2.1 Amino Acid Transport.- 6.2.2 Monosaccharide Transport.- 6.2.3 Transport of Nucleosides, Nucleic Acid Bases and Nucleotides.- 6.3 Glycolysis.- 6.4 Pentose Phosphate Pathway and Glutathione Metabolism.- 6.4.1 Pentose Phosphate Pathway.- 6.4.2 Glutathione Metabolism.- 6.5 Krebs Cycle and Oxidative Phosphorylation.- 6.6 Organic Phosphate Metabolism.- 6.6.1 Nucleotide Metabolism.- 6.6.2 Inositol Pentaphosphate Metabolism.- 6.7 Cellular Control of Red Cell Organic Phosphate Concentrations.- 6.7.1 Organic Phosphate Concentrations.- 6.7.2 Ontogenetic and Environmental Factors Influencing the Organic Phosphate Concentrations.- 7. Major Ion Transporting Pathways.- 7.1 Electrodiffusive Leak.- 7.2 Ion Channels.- 7.3 Anion Exchange.- 7.4 Ion Transport Coupled to Sodium or Potassium Gradient.- 7.4.1 Sodium/Potassium/Chloride Cotransport.- 7.4.2 Potassium/Chloride Cotransport.- 7.4.3 Alkali Metal/Proton Exchange.- 7.4.4 Sodium/Calcium Exchange.- 7.5 Active Transport.- 7.5.1 Sodium Pump.- 7.5.2 Calcium Pump.- 7.6 Membrane Potential.- 7.6.1 Gibbs-Donnan Equilibrium.- 7.6.2 Membrane Potential in the Presence of Active Transport.- 8. Control of Volume and pH.- 8.1 The Basic Model: Control of Red Cell pH and Volume in the Absence of Significant Secondarily Active Transport.- 8.1.1 Maintenance of the Steady-State Volume.- 8.1.2 Determinants of the Steady-State pH.- 8.1.3 pH and Volume Changes in Response to Carbon Dioxide Addition and Removal, and Acid and Base Loads.- 8.1.4 Volume Changes in Response to Osmotic Disturbances.- 8.2 Mammalian Red Cells.- 8.2.1 Human Red Cells.- 8.2.2 Ruminant Red Cells.- 8.2.3 Carnivore Red Cells.- 8.2.4 Rodent Red Cells.- 8.2.5 Lagomorpha Red Cells.- 8.3 Avian Red Cells.- 8.4 Reptilian Red Cells.- 8.5 Amphibian Red Cells.- 8.6 Fish Red Cells.- 8.6.1 Teleost Red Cells.- 8.6.2 Elasmobranch Red Cells.- 8.6.3 Agnathan Red Cells.- 9. Carbon Dioxide Transport.- 9.1 Distribution of Total Carbon Dioxide Content Between Red Cells and Plasma.- 9.2 Carbon Dioxide — Bicarbonate Equilibria.- 9.2.1 Uncatalyzed Interconversion Between Carbon Dioxide and Bicarbonate.- 9.2.2 Function of Carbonic Anhydrase.- 9.2.3 Role of Buffers.- 9.3 Formation of Carbamino Compounds.- 9.4 Mechanisms of Carbon Dioxide Excretion.- 10. Oxygen Transport.- 10.1 Haemoglobin-Oxygen Equilibria — Basic Principles.- 10.1.1 Oxygen Equilibrium Curve.- 10.1.2 Homotropic and Heterotropic Interactions.- 10.1.3 Effect of Haemoglobin Concentration.- 10.1.4 Temperature Effects.- 10.2 Methods for Determining Blood/Haemoglobin Oxygen Content and Oxygen Equilibrium Curves.- 10.2.1 Preparation of Blood or Haemoglobin Solutions for Determinations of Oxygen Equilibrium Curves.- 10.2.2 Methods for Determining Oxygen Equilibrium Curves.- 10.3 Molecular Aspects of Haemoglobin-Oxygen Binding.- 10.3.1 Binding of Oxygen to the Haem Group.- 10.3.2 Cooperativity.- 10.3.3 Bohr Effect.- 10.3.4 Binding of Organic Phosphates and Other Anions.- 10.4 Formation and Reduction of Methaemoglobin.- 10.5 Cellular and Molecular Adaptations of Haemoglobin Function to Variations in Respiratory Requirements.- 10.5.1 Ontogenetic Changes in Haemoglobin-Oxygen Affinity.- 10.5.2 Responses of Air-Breathers to High Altitude.- 10.5.3 Blood Oxygen Affinity in Burrowing Air-Breathers.- 10.5.4 Blood Oxygen Transport in Diving Animals.- 10.5.5 Red Cell Function in Hypoxic Water-Breathers.- 10.5.6 Blood Oxygen Affinity in Transition from Water-to Air-Breathing.- 10.5.7 Effects of Temperature on the Blood Oxygen Affinity in Poikilotherms.- 10.5.8 Blood Oxygen Transport in Relation to Activity and Physical Disturbances.- 10.5.9 Blood Oxygen Affinity in Hibernation, Aestivation and Torpor.- References.


 
Last edited:
Back
Top